MOVEMENT OF IMPLICIT PARALLEL AND VECTOR EXPRESSIONS

OUT OF PROGRAM LOOPS

Paul B. Schneck

_ Institute for Space Studies
New York, N. Y. 10025

(MATA=TY=103051) @avEmMENT OF [MPLICIT
PACALLLL AND VECTOR EXPOCSSIONS OUT OF

PRUGHAM (7TUPL (NAGA) 12 b

No/b4

NFTO-T0141

uncltas
027759«

ABSTRACT

The concept of "interference" is introduced and related to the problem of
transforming implicit parallel and vecior operations to an explicit form. Statement
types and constructs which cause interference are identified. Programming tech-
niques which avoid use of potentially interfering statements resulf in programs

which are better suited for operation on parallé;l and vector processors.

The analysis of the inhibiting effect of interfering statements on the motion
of parallel and vector expressions has been implemented and demonstrated as an

_addition to an existing compiler which recognizes parallelism implicit in serial

~ev

MOVEMENT OF IMPLICIT PARALLEL AND VECTOR EXPRESSIONS

- OUT OF PROGRAM LOOPS

INTRODUCTION

This paper discusses the abi.lity to move statements or expressions out of
the range ofa program ioop so that serial operations may be replaced by parallel
or vector* operations. An earli;zr paper (Schneck, 1972) described the recognition
of implicit parallel expressions in a high Ievgl language. This paper deals with
the trea_iment of sx'xch expressions after recognition, We cieﬁne the.conditions

which permit or inhibit the movement of potentially paralle! xspressions out of

program loops.

MOTION OF EXPRESSIONS

The ideal disposition of a parallel expx.'ession within a program loop is re-
moval and exécution outside the loop. If there were no "intexrference' all such
expressions could be moved in froﬁt of the loop and theix; results 'used within the
loop. Figure lais an example of a progranﬁ loop which contains no statements
interfering with the motion of parallel statements. All parallel statements are

removed from the loop as shown in Figure 1b. I interfering statements are

*
For the remainder of this paper we will use the term "parallel' in place of the

bulky ""parallel or vecior."

. present the situation gets quite complex. When one statement cannot be moved it
may prevent another from being moved. The next sections examine relationships

between statements and their effect on the "moveability" of a statement.

DIRECTION OF MOTION

The example given above illustrated upward motion of parallel expressions.
That is, a parallel expression was moved to p}jeéede the loop in which it originally
appeared, This is the most natural formulation in the context of a (locally) first-
to-last sequence of statement analysis: statement ordering is preserced without

regard to any potential interference. *

A statement which cannot be moved (upward) to precede a loop is examined
to determine whether it can be moved {downward) to follow the loop. An interfer-
ing statement acts as a barrier to the passage of certain variables. Figure 2
illustrates forms of interferenc;e which may occur. The h;lportant point is that
regardless of the configufation of interfering statements a program loop will be
divided into at most three i‘egions: first, a region permitting only upward motion;
second a region surrounded by (the extreme) interfering statements and not per-
mitting any motion; third a region permitting only downward motion. As shown,

one or two of these regions may be null.

*
Interference, which has still not been defined is a function of the variables. A

statement may interferc with only some, but not all, variables.

INTERFERENCE AND MOVEMENT

An expression which cannot be moved is said to be an interfering expression.

There are three types of interfering expressions:

1. . An expression in a non-arithmetic statement (¢.g. READ, 'CALL, etc.)
which must be performed in a loop.

2, An expression which is not a functi?p solely of constants, relative
constants, and parallel operands (e.g. A{@)*J). N

3. Any expression which may not be performed in parallel -~ for the
above reasons, or because recursive relationships will not permit
parallel operation (e.g. AA +1)=A (i)+A a-1)).

An interfering expression may limit the movement of otherwise moveable expres-

sions. Figure 3 details an example cf the effects of interfering expressions.

An interfering definition is a barrier to the movement of both uses and
definitions. Any uses moved across a definition will employ the wrong V (old)
values. Definitions moved across a definition will be nullified by the one they

originally followed.

An interfering use is also a barrier to the movement of definitions. Defini-
tions moved across a use will result in the premature replacement and use of old
values by new. However, interfcring uses do not inhibit the movement of other

uses -~ there is no conflict between use and definition in this case.

The relationship between interfering statements and other statements may

be sumimarized in tabular form:

Interfering Variable

- - REFERENCE DEFINITION

Target

Variable REFERENCE MOVE INHIBIT
DEFINITION INHIBIT INHIBIT

IMPLEMENTATION: INTERFERENCE NUMBERS
A pair of "interfercnce numbers', updated as successive statements are
processed, describe the ins.tantancous moveability of each variabie. The numbers
hold a variable's status 'with.respect to r_eferences and deﬁﬁitions. A reexamina-

tion of Figuré 2 will show that there are only three possible copfigdrations invol-

ving the uce of a variable and interfering expressions:

«a) The variable precedes any interfering expressions.
B8) The variable follows all ihterfering expressions.
Y) The variable is between interfering expressions.

The first configuration includes the case in which there are no interfering state-

ments,

Because of the need to determine the extreme interfering expressions for a
variable, two passes over the text are required. All interference numbers are
initialized to zero. During the first pass, which is necessary for optimization and
information gathering, the definition and/or reference.interference numbers are
set to the statement position whenever an interfering expressioﬁ is eﬁcountered.

If the interfering expression is a definition, which can inhibit the movement of

[}

4

references and definitions, both interference numbers will be set. If the interfer-
ing exbression is a reference, which can only inhibit the movement of definitions,
then only the reference interference number is set. Thus, at the end of the first
pass the interferel'lce numbers indicate the position of the last interfering expres-

sion for each variabie,

An interference numbef which remains at zero indicates that no interfering
expressions are present. Thés'e interference numbers which are not zero are
adjusted to indicate the statement at which downward motion becomes permissible.
When the parallel nature of a variable is destroyed it cannot be recovered until a
later point where all paths affecting the variable have rejoined as illustrated in
Figure 4. During the second pass, when output code is geﬁerated, variables
will be moved up to permit parallel operations unless ﬂégged otherwise., Flag-
ging of the interference number components occurs when a variable is used
(réferenced or defined) in an intcrfeﬁng expression, .The flag indicates that no

motlion is curvently possible. When the statement indicated by the interference

WD R S Ty P

3
2

number is reached the flag will be reset to indicate that downward motion is
possible. In cases of conflict, e.g. where the refercnce flag indicates upward
motion is possible and the definition-flag indicates downward motion, both condi-

tions must be satisfied; in this instance there will be no motion.

CONCLUSION

Conditions affecting the movement of pbf(}ntially parallel expressions out of
program loops are described, and the results of a working model of this treatment
are illustrated. Thé constructs inhibiting movement of parallel expressions may
be related to current programming techniques in an effort to minimize situaﬁons

where they occur.

REFERENCE

Schneck, P. B., ""Automatic Recognition of Parallel/Vector Operations in a

Higher Level Language', Proccedings ACM 1972 National Conference.

>

A(T) = B(I)+C(I)
B(T) B(I)/C(I)-!-i.

Wﬁln_ (S,100) B(I)

(0) CR lGH\L\L PRCGRAM

A(36)=B(3)+C(4)
_ BG#)=BGA)/ CRO+HL
| WRITE (9,100 B(T)
) TRANSFORMED PROGRAM

Ficure 1 -Movement of Expressions -

- With No dntarference

X%XXX
a | '
v B{:l’
a) d 'b)
e{—1 s |
— Y
B é __B_E 9

c)

Xx XXX

EQ
Y
B¢

X¥x x¥xX

XX XxX

v

e) f)
Diagram |Nature of Interfarence Result
a. None upviard or downward motion
b. Upward downward mofion
C. Downward upward motfion
d Ceniral upward motion from above,
dovinwiard from below
e. rultipte (2) upward rmotion from above,
dovriniard from below
. Multiole {(iN) upvard mofion from above onesy,
cdoemviard from below loviest

Yo — A §

- SEWRY VY

TOO00I(%)=A (%) -+B (%)

WRITE.(9,IOO) B(T) WRITE (9,100) B(T)
B(T)=A(D +B(I) —>|B(I)=TO000I (I)

(a) USE_BLOCKS DEFINITION, NOT USE
TO0002 (3¢)=C64) 3B (3¢)
[Zm:RANDoru.() R (T)=RANDCM (T)
8

i

(1) =A(I)-+C(I)*B(ID) B(I)=A(T)-‘L—TOOOOZ(I)
- (b) DEFIITION BLOCKS USE OF VARIABLE

- TOOOOI(36)=C(34) 3% B (%)

CA(T)= RANDCM (I)] (T)=RANDOM ()
A(T)=C(I): LB L(I)- TOCOOI(T)

.~ (¢) DEFVUTION BLOCKS DEFINITICN, NOT OTHER USES

Figure 3-Types of Interference

/‘/\

A1) =B(I) 5 C(I)

A(I)= 0 e
2, i
.} =A(I) =...(I)...

A(T) = A(1) *-B(I)

a) FLOWCHART
"~ Statement ~ Position
pDOc1=1100 '
- A(D)=B{(T1) = C(1)
IF(A(Y)...) GO TO3
A(D)=0. -

|
2
3
4
GO T0O5 . 5
3 =...A(D). - 6
IF (B(L)..) GO TOS5 7
S A1) 8

AlL)= . 9
5 A(I)= A()+B(I) 10
9 CONTINUE T

b) PROGRAM SEGMENT
Positicn Pass | Adjustment

referenca/definition
-3 0/0
4-8 4’4 | }]O/]O
9-1l S/9 .

¢) FLAGS FOR THE VARIABLE "A

v o o~ y -
-yt e / PR S) P Y o oo e o ~
PIOUrD &0 oy ang rne Interierencs

-

o

i

Pass 2

up/down —motion

Numbers

v/ X

K/ X
) YAV

up
NONE
D O“’\f‘f' id

